skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Thomas, Siby"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Developing protocols for designing high‐efficiency, durable, cost‐effective electrocatalysts for oxygen evolution reaction (OER) necessitates deeper understanding of structure–property correlation as a function of composition. Herein, it has been demonstrated that incorporating tellurium into binary nickel chalcogenide (NiSe) and creating a mixed anionic phase perturbs its electronic structure and significantly enhances the OER activity. A series of nanostructured nickel chalcogenides comprising a layer‐by‐layer morphology along with mixed anionic ternary phase are grown in situ on nickel foam with varying morphological textures using simple hydrothermal synthesis route. Comprehensive X‐ray diffraction, X‐ray photoelectron spectroscopy, and in situ Raman spectroscopy analysis confirms the formation of a trigonal single‐phase nanocrystalline nickel (telluro)‐selenide (NiSeTe) as a truly mixed anionic composition. The NiSeTe electrocatalyst exhibits excellent OER performance, with a low overpotential of 300 mV at 50 mA cm−2and a small Tafel slope of 98 mV dec−1in 1 mKOH electrolyte. The turnover frequency and mass activity are 0.047 s−1and 90.3 Ag−1, respectively. Detailed electrochemical measurements also reveal enhanced charge transfer properties of the NiSeTe phase compared to the mixture of binaries. Density functional theory calculations reveal favorable OH adsorption energy in the mixed anionic phase compared to the binary chalcogenides confirming superior electrocatalytic property. 
    more » « less